第三百四十二章 香农的信息熵 (5 / 10) 首页

字体:      护眼 关灯

上一章 目录 下一章

第三百四十二章 香农的信息熵 (5 / 10)
        L(1)=1,L(2)=2,L(3)=3,L(4)=4,

        L(5)=5,L(6)=6,L(7)=7,L(8)=7。

        (对,L(8)=7,俺没敲错。)

        因为俺心里想的是个随机变量X,在这个策略下所需要的问题数目L(X)就也是个随机变量。这个随机变量L(X)也有一个分布,在知道P(x)的前提下,如果想算也是可以算出来的。但是俺懒得算它。

        既然L(X)是个随机变量,一个最自然的方式定义这个策略所需要的问题个数就是用这个随机变量的均值,或者说用平均所需要的问题个数。如果你的数字直觉好,应该可以看到,即使不求L(X)的分布,这个随机变量的均值其实就是

        L(1)*P(1)+L(2)*P(2)+…+L(M)*P(M).

        用L(X)的均值定义一个问问题策略所需要的问题个数除了“自然”,还有什么物理意义吗?当然!前面的大数定理告诉咱们,如果你用这个策略玩这个游戏很多次,你所用问题个数的平均值“几乎总是很接近”L(X)的均值。而当你玩了这个游戏无数次之后,你平均每次用的问题数就正好是这个L(X)的均值。

        由此可见,如果俺们准备玩这个游戏很多次,那么用L(X)的均值定义所需要问题的个数,用金星老师的话说就是一个动作两个字:完美。

        至此,俺们已经确定这个“二十个问题”游戏的准确规则,即:你要设计一种问问题的策略,当用这个策略跟俺玩很多次(更准确的说,无数次)这个游戏之后,平均每次用的问题个数要越少越好!换句话说,我们希望寻找一个最好的问问题策略,同时确定最少需要多少个问题(平均意义上)。

        其实在一些特殊的情况下,确定最优的问问题策略和最少需要的问题个数并不困难。

        考虑这样一个特例:俺心里的神秘数字X的取值范围是S={1,2,…,8},而且X的概率分布函数是个均匀分布。那么最优的问问题方法就是所谓的“二分法”:每问一个问题要把这个神秘数字的可能范围缩减一半。比如这样的问法:

        问题1:把集合{1,2,…,8}分成左右两份,左边的是{1,2,3,4},右边的是{5,6,7,8}。然后问:你想的数是不是在左边啊?

        问题2:根据俺的答案,你可以确定这个神秘数字只剩下四种选择。你再类似地把四种选择分成左右两份,然后问:你想的数是不是在左边啊?

        内容未完,下一页继续阅读

更多完整内容阅读登陆

《墨缘文学网,https://wap.mywenxue.org》
加入书签我的书架


上一章 目录 下一章