第二百六十五章 拓扑学 (3 / 3) 首页

字体:      护眼 关灯

上一章 目录 下一章

第二百六十五章 拓扑学 (3 / 3)
        马克说:“有界之后,如何紧致化?”

        ErikZeeman说:“这是海涅-博雷尔定理或有限覆盖定理、定理的主要内容是度量空间的子集是紧致的,当且仅当它是完备的并且完全有界的。”

        马克说:“是子集紧致就行吗?那能不能在详细一些,紧致空间的性质是什么?”

        ErikZeeman说:“紧致性本质上是有限性条件,有限性条件破解类似一日之椎,日取其半,万世不可遏这样的意思。假如孙悟空在如来的手掌心翻跟斗,跟斗云是一个任意序列,停在如来的手指旁是存在一个子列收敛,留下到此一游的字和撒尿是在一个有界的闭集里。或者一个瓶子里装高尔夫球后,可以装石子,然后还可以装沙子,最后还可以装水,这都说明原来的东西不够紧。这些都可以作为例子来想。”

        马克说:“不错,这个解释变得清晰了一些。”

        234说:“然后,就需要了解乘积空间。”

        马克说:“乘积空间是干什么的,是要把拓扑空间乘起来吗?”

        234说:“没错,打个比方,就是R的n维空间是n个R直线乘起来的。”

        马克说:“这个是在高纬度实数坐标中的一种比喻。”

        234说:“现在开始研究连通性。如果非空的A和B都是分离并,他们都在X中,一般是不连通的。”

        马克说:“什么?”

        234继续说:“如果X让分离并连通了,就称之为连通的。”

        马克说:“R的n维空间是连通的吗?”

        234说:“是连通的。”

        【本章阅读完毕,更多请搜索墨缘文学网;http://wap.mywenxue.org 阅读更多精彩小说】

更多完整内容阅读登陆

《墨缘文学网,https://wap.mywenxue.org》
加入书签我的书架


上一章 目录 下一章