字体:大 中 小
护眼
关灯
上一章
目录
下一章
第二百六十五章 拓扑学 (2 / 3)
ErikZeeman说:“主要就是分类,对不同的拓扑结构进行分类。分类出很多曲面,对曲面解构成抽象空间,然后找到拓扑不变量去分类。”
马克说:“那要分类很多曲面,是什么曲面?有标准吗?”
ErikZeeman说:“是的,要严格的连续曲面,不能是离散的。”
马克说:“如何说明是连续的?”
ErikZeeman说:“就跟我说的一样,这是一个抽象空间,这个空间需要由开集和闭集这样的东西给组成。然后开集和闭集需要引入连续映射系统来完整这个函数的描述。”
马克说:“为什么要用开集和闭集这样的东西?”
ErikZeeman说:“因为严格。如果使用几何、数字、符号或者是其他的描述拓扑的系统,都缺乏严格性。如果时间久了会出现很多我们不想要的漏洞。”
马克说:“我明白了。”
ErikZeeman说:“在这样的前提下,就可以大胆的研究映射,让曲线充分的施展开来。可以让普通的曲线因为映射充满整个空间。同时开始使用Tietze扩张定理。”
马克说:“扩张?如何扩张?”
ErikZeeman说:“是R的n维空间的有理点集,扩张到整个空间。”
马克说:“扩张到所有的无理点集?”
ErikZeeman说:“恩,是这个意思。”
马克说:“不错,可是刚刚说的这个开集和闭集,这个如何算严格,怎么去连续,变得光滑?”
ErikZeeman说:“需要有紧致性和连通性,加有界闭集这种概念。闭集是bai两边类似[1,10];有界集两边是(1,10],[1,10)两种。”
内容未完,下一页继续阅读
更多完整内容阅读登陆
《墨缘文学网,https://wap.mywenxue.org》
上一章
目录
下一章