字体:大 中 小
护眼
关灯
上一章
目录
下一章
第34章 数据融合异常 (3 / 4)
说人话就是,模型在融合信息的时候没有一个轻重缓急,对所有模态的数据都一视同仁,平等对待了所有输入。
这在模态少的时候可能适用,因为数据输入之前,在无形之中其实是多了一个人工筛选的步骤。
比如你要预测股票的涨跌,相比于各种专家的视频分析,你可能会更加相信各种金融指标,所以你就会下意识地选择各种数字指标输入模型,而不是专家的视频分析。
这就隐含地为数据赋予了权重,虽然代码里没有,但它确实是真实存在的。
不过人工筛选终究是有一些小问题的,在金融这个反人类的领域,光凭经验很多时候容易做出错误的判断。
“也就是说,在数据融合的时候,缺少了一个‘智能筛选’的步骤,让模型知道,哪些数据重要,哪些数据不重要。”
“数据筛选.......”周昀手指轻轻敲打着桌面,思考着解决办法。
如果只是单纯的逻辑判断,肯定不行,这样太死板,还不如人来筛选。
置信度?
周昀想了一下,也觉得不行。
置信度其实就是模型对自己输出结果的把握大小,例如一个分类任务,最终模型的输出会在Softmax函数的作用下,变成一连串的概率,
比如分类到A的概率为80%,B任务的概率为10%以此类推。
那么置信度就是采用概率大于一定数值的结果。
这东西听上去玄乎,实际上也是一种比较死板的逻辑判断。
除了这两种,筛选数据的方法其实还有很多,不过周昀都不满意,因为这些方法从他们的底层逻辑来看,都没有达到他想要看到的“智能”。
内容未完,下一页继续阅读
更多完整内容阅读登陆
《墨缘文学网,https://wap.mywenxue.org》
上一章
目录
下一章