第213章 通往山顶的一小步 (1 / 5) 首页

字体:      护眼 关灯

上一章 目录 下一章

第213章 通往山顶的一小步 (1 / 5)
        圆法的全称为“哈代李特伍德圆法”,不但是研究哥德巴赫猜想的重要工具,更是解析数论中常备用到的重要工具。

        而关于这个工具的发明,并非是在哥德巴赫问题上。现在数学界普遍认为的观点是,这一概念是哈代在与拉马努金研究“整数拆分的渐近分析”问题中最先出现的,而后在哈代与李特伍德合作研究华林问题时,被补充完整。

        如今,作为研究哥德巴赫猜想的重要工具,这项工具已经被后世的数学家发扬光大。

        比如站在讲台上的赫尔夫戈特,便是当今数论界中,圆法理论的大牛。

        “……哥德巴赫猜想的内涵为任意大于2的偶数都可写成两个质数之和,我们姑且称之为猜想a。”

        “……由于奇数减去奇素数是一个偶数,猜想a认为任何偶数都等于两个素数之和,故而用猜想a可得推论猜想b,任意大于9的奇数都可以写成三个奇素数之和。”

        开场白说到这里,赫尔夫戈特顿了顿,继续说。

        “而我所讲述的‘圆法’,便是证明其哥德巴赫猜想的弱猜想,即猜想b!”

        猜想a成立,猜想b一定成立。

        但反过来,却不行。

        至于为什么,这涉及到一个逻辑数学中很有趣的问题。用初等数学难以描述,但用描述性的语言来解释的话,就是“任意大于9的奇数与奇素数之和”所组成的集合,与“任何偶数”这一集合不等价,且交集中的所有元素无限多,亦不可穷举证明。

        其实抽象的来看,无论是圆法的“偶数集合”还是筛法的“1+1形式”,大家都是半斤八两,都差最后的临门一脚。

        这个距离可能是隔着一条河,也可能是两山对望。

        简短的开场白之后,赫尔夫戈特也不废话,在白板上写下了一行算式。

        【……当2||n,有r3(n)=1/2n(n/n)n(1-1/(p-1))n(1+1/(p-1)),(1+o(1))】

        内容未完,下一页继续阅读

更多完整内容阅读登陆

《墨缘文学网,https://wap.mywenxue.org》
加入书签我的书架


上一章 目录 下一章