字体:大 中 小
护眼
关灯
上一章
目录
下一章
第四百七十五章 最小比特数来源无穷实验
还是二十个问题攒着玩吧。不过这次俺也不去想什么随机数了。俺就把之前例子里的那个老千找来,让他躲在俺身后不停地掷硬币。俺就把他掷出的0/1结果写在纸条上。等俺写完n个数的时候,就让你开始问问题。前面说过,这无非就是把这个老千掷硬币的结果当作一个信息源,对这个信息源做压缩。
因为n很大很大,让我们先回顾一下大数定理的情怀:
老千掷出的硬币序列的平均值几乎总是很接近1/3。
根据俺之前对这句话不辞劳苦的解释,这句话也可以换一种说法,而且这种说法很重要(重要的事情说三遍!)
老千掷出的序列几乎可以肯定有差不多n/3个1和2n/3个0!
老千掷出的序列几乎可以肯定有差不多n/3个1和2n/3个0!
老千掷出的序列几乎可以肯定有差不多n/3个1和2n/3个0!
同学们再好好体会一下俺极其考究、极负责任、极具情怀的用词:“几乎可以肯定”和“差不多”。
这个重要结论很容易推广到掷硬币之外的任意随机变量:假设随机变量X是通过一个在集合S={1,2,…,M}上定义的概率分布函数P(x)描述的。那么当俺们产生n个相互独立的这样的随机变量的时候,如果n是个很大的数字而a是S中的任意一个数,那么:
产生的随机序列几乎可以肯定有差不多n*P(a)个a!
产生的随机序列几乎可以肯定有差不多n*P(a)个a!
产生的随机序列几乎可以肯定有差不多n*P(a)个a!
也就是说,虽然得到的序列本身是随机的,不确定的,但是当n很大的时候,这个序列的组成“几乎”是“差不多确定的”!而且可以想象,当n无穷大的时候,这里的“几乎”和“差不多”都可以删去!
在老千掷硬币这个例子里,如果一个硬币的序列有差不多n/3个1和2n/3个0,那么俺就管这种序列叫“典型序列”。在更普遍的意义上,相对于一个在S上定义的分布P(x),一个由S里的数字组成的长度为n的序列俺也管它叫典型序列,如果S里的每个数a在这个序列中出现了差不多n*P(a)次。在典型序列定义中的“差不多”是差多少?呵呵,跟前面的逻辑一样,如果n很大,差不多就是差一丁点,如果n无穷大,差不多可以是“一点不差”!
那么上面重要的说了三遍的话用这个语言重新说,就是:
老千掷出的序列几乎可以肯定是典型的!
老千掷出的序列几乎可以肯定是典型的!
老千掷出的序列几乎可以肯定是典型的!
当n无穷大的时候,这句话里的“几乎”当然也是可以删掉的。也就是说,在n无穷大的时候,不典型的序列根本不会出现!那么,你问问题的时候岂不是只需要针对典型序列问问题就行了?
【本章阅读完毕,更多请搜索墨缘文学网;http://wap.mywenxue.org 阅读更多精彩小说】
更多完整内容阅读登陆
《墨缘文学网,https://wap.mywenxue.org》
上一章
目录
下一章