字体:大 中 小
护眼
关灯
上一章
目录
下一章
第442章 或许这就是巧合吧(补更) (3 / 7)
戴德金ζ函数一个自然的推广,是考虑多元多项式的情况。
而这里,就进入了代数几何的领域。
多元多项式的零点,定义了一个几何对象,也就是代数簇。
对代数簇的研究,便被称之为代数几何。
说起来,代数几何虽然是一门古老的学科,但它也是在20世纪,才经历了一次蔚为壮观的发展。
20世纪初期,意大利学派对代数曲面的研究,有了长足的进展。
然而,其不严谨的基础,促使奥斯卡·扎里斯基和安德烈·韦伊重构了整个代数几何的基础。
韦伊更是指出了代数几何和数论与拓扑之间的惊人联系。
在之后,被誉为代数几何皇帝的格罗滕迪克,为了理解韦伊的猜想,更进一步用更抽象本质的方法,重新构建了代数几何的基础,并引进了一系列强大的工具。
特别是他的上同调理论,最终促使他的学生,也就是陈舟的三位审稿人之一的德利涅教授,完整的证明了韦伊猜想。
并因此,获得了菲尔兹奖。
事实上,格罗滕迪克的上同调理论,根植于代数拓扑。
而且,格罗滕迪克同时构造了一系列上同调理论,它们具有非常类似的性质。
但却起源于非常不同的构造。
内容未完,下一页继续阅读
更多完整内容阅读登陆
《墨缘文学网,https://wap.mywenxue.org》
上一章
目录
下一章